SOLUTIONS

→ Homogeneous systems that contain two or more substances are called solutions

→ The major component is usually called the solvent, and minor components are called the solutes

- **11.1** Composition of Solutions
- **11.2** Nature of Dissolved Species
- **11.3** Reaction Stoichiometry in Solutions: Acid-Base Titrations
- **11.4** Reaction Stoichiometry in Solutions: Oxidation-Reduction Titrations
- **11.5** Phase Equilibrium in Solutions: Nonvolatile Solutes
- **11.6** Phase Equilibrium in Solutions: Volatile Solutes
- **11.7** Colloidal Suspensions

General Chemistry I

1

CHAPTER

 \rightarrow Several measures are used to specify the composition of a solution

11.1 COMPOSITION OF SOLUTIONS

Percent composition

Mass (or Weight) % = $\frac{\text{mass of solute}}{\text{mass of solution}} \times 100$ Vol % = $\frac{\text{vol of solute}}{\text{vol of solution}} \times 100$

Parts per million & parts per billion

$$ppm = \frac{mass \text{ of solute}}{mass \text{ of solution}} \times 10^{6} \approx O(mg L^{-1})$$
$$ppb = \frac{mass \text{ of solute}}{mass \text{ of solute}} \times 10^{9} \approx O(\mu g L^{-1})$$

Mole Fraction

$$X_1 = \frac{n_1}{n_1 + n_2}, \quad X_2 = \frac{n_2}{n_1 + n_2} = 1 - X_1$$
 (for a binary mixture)

> Molarity & Molality

Molarity (M) =
$$\frac{\text{moles solute}}{\text{liters solution}} = \text{mol L}^{-1}$$

Molality (m) = $\frac{\text{moles solute}}{\text{kilograms solvent}} = \text{mol kg}^{-1}$

✓ Molality is independent of temperature!

(d)

(b)

(c)

Preparing a solution of NiCl₂ using a volumetric flask

(e)

Dilution of solution

Chemical amount conserved.

$$n = c_i V_i = c_f V_f \longrightarrow c_f = \frac{\text{moles solute}}{\text{final solution volume}} = \frac{c_i V_i}{V_f}$$

n: number of moles of solute

- $c_{i(f)}$: initial (final) concentration in molarity
- $V_{i(f)}$: initial (final) solution volume in liters

- → (solvent-to-solvent and solute-to-solute attractions) are broken up and replaced, at least in part, by new solvent-to-solute attractions.
- \rightarrow liquid water is indisputably the best known and most important solvent.

11.2 NATURE OF DISSOLVED SPECIES

Aqueous Solutions of Molecular Species

- Polar molecules dissolved by water ~ "Like dissolves like"
- > Sugars: $C_m(H_2O)_n$
 - ~ Sucrose ($C_{12}H_{22}O_{11}$), Fructose ($C_6H_{12}O_6$), Ribose ($C_5H_{10}O_5$)
 - ~ Do not contain water molecules
 - ~ Include polar –OH groups
 - ~ Dipole-dipole interaction between –OH groups and water molecules \rightarrow *hydrogen bonds*

Fig. 11.2 Electrostatic potential energy surface of a glucose molecule and its hydrated form in aqueous solution. Four water molecules are bonded with hydrogen bondings.

Aqueous Solutions of Ionic Species (Electrolytes)

Solubility: Maximum mass dissolved in 1L at 25°C

 $K_2SO_4(s) \rightarrow 2 \text{ K}^+(aq) + SO_4^{2-}(aq),$

Solubility of K₂SO₄: 120 g L⁻¹ at 25°C

Dissolution of ionic species \rightarrow Ion-dipole forces

Each ion is surrounded by an intact solvation shell of water molecules.

- ~ Good conductor, strong electrolyte
- ~ Electrophoresis under an electric field

Insoluble salts

BaSO₄(s) → Ba²⁺(aq) + SO₄^{2–}(aq), Solubility of BaSO₄: 0.0025 g L⁻¹ at 25°C

Precipitation reaction

 $\begin{aligned} &\mathsf{BaCl}_2(aq) + \mathsf{K}_2\mathsf{SO}_4(aq) \to \mathsf{BaSO}_4(s) + 2 \ \mathsf{KCl}(aq) \\ &\mathsf{Ba}^{2+}(aq) + 2 \ \mathsf{Cl}^-(aq) + 2 \ \mathsf{K}^+(aq) + \mathsf{SO}_4^{2-}(aq) \\ &\to \mathsf{BaSO}_4(s) + 2 \ \mathsf{K}^+(aq) + 2 \ \mathsf{Cl}^-(aq) \end{aligned}$

Net ionic equation

 $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$

Spectator ions: CI⁻ and K⁺

Potassium sulfate (K₂SO₄)

Fig. 11.3 Dissolves in water. General Chemistry I

Conducts electricity. Fig 11.4

Reacts with $BaCl_2 \rightarrow BaSO_4 \downarrow$ Fig 11.5 → Most chemical reactions that occur on the earth's surface, whether in living organisms or among inorganic substances, take place in aqueous solution.

11.3 REACTION STOICHIOMETRY IN SOLUTIONS: ACID-BASE TITRATIONS > Reactions in Solution

Ex. $2 \operatorname{Br}(aq) + \operatorname{Cl}_2(aq) \rightarrow 2 \operatorname{Cl}(aq) + \operatorname{Br}_2(aq)$ We have 50.0 mL of 0.0600 M solution of NaBr.

Q. What is the volume of 0.0500 M Cl₂ to react completely with Br⁻?

 $n = (0.0500 \text{ L})(0.0600 \text{ mol/L}) = 3.00 \times 10^{-3} \text{ mol}$

 $n = 3.00 \times 10^{-3} \text{ mol} \times (1/2) = 1.50 \times 10^{-3} \text{ mol}$

 $V = (1.50 \times 10^{-3} \text{ mol}) / (0.0500 \text{ mol/L}) = 3.00 \times 10^{-2} \text{ L}$

Q. What is the concentration of CI-? $n_{\text{CI}^-} = n_{\text{Br}^-}$

 $V_{\text{total}} = V_{\text{Br}^{-}(aq)} + V_{\text{Cl}_{2}(aq)} = 0.0500 \text{ L} + 0.0300 \text{ L} = 0.0800 \text{ L}$ $[\text{Cl}^{-}] = n_{\text{Cl}^{-}} / V_{\text{total}} = 3.00 \times 10^{-3} \text{ mol} / 0.0800 \text{ L} = 0.0375 \text{ M}_{\text{KAIST}}$ General Chemistry I

Background on Acid-Base Reactions

T A B L E 11.1

Names of Common Acids

Binary Acids	Oxoacids	Organic Acids	
HF, hydrofluoric acid	H ₂ CO ₃ , carbonic acid	HCOOH, formic acid	
HCl, hydrochloric acid	H ₃ PO ₃ , phosphorus acid	CH₃COOH, acetic acid	
HCN, hydrocyanic acid [†]	H ₃ PO ₄ , phosphoric acid	C ₆ H ₅ COOH, benzoic acid	
H ₂ S, hydrosulfuric acid	HNO ₂ , nitrous acid	HOOCCOOH, oxalic acid	
	HNO ₃ , nitric acid		
	H ₂ SO ₃ , sulfurous acid		
	H ₂ SO ₄ , sulfuric acid		
	HClO, hypochlorous acid		
	HClO ₂ , chlorous acid		
	HClO ₃ , chloric acid		
	HClO ₄ , perchloric acid		

[†]Contains three elements but is named as a binary acid.

13

Names of common acids

Ionization of pure water

 $H_2O(I) \rightarrow H^+(aq) + OH^-(aq)$

 $[2 H_2O(I) \rightarrow H_3O^+(aq) + OH^-(aq)]$

hydronium ion

> Arrhenius's definition of Acids and Bases

<u>Acid</u> ~ produces H⁺ in aqueous solution (> $[H^+]_{water}$) HCl(q) \rightarrow H⁺(aq) + Cl⁻ (aq)

Base ~ produces OH⁻ in aqueous solution (> $[OH^-]_{water}$) NaOH(s) → Na⁺(aq) + OH⁻(aq) NH₃(aq) + H₂O(/) → NH₄⁺(aq) + OH⁻(aq)

Titration

Determination of unknown amount of a sample

Titrant (in buret, known concentration, volume to be measured)

→ <u>Titrate</u> (*in flask, unknown concentration, known volume*) End point, Indicator

Acid-Base Titration

 $CH_3COOH(aq) + OH^-(aq) \rightarrow CH_3COO^-(aq) + H_2O(I)$

Indicator ~ Phenolphthalein

Ex. 31.66 mL of 1.306 M NaOH \rightarrow 50.00 mL of a vinegar sample Calculate [CH₃COOH(*aq*)] in the sample.

At the end point,

 $n(NaOH) = n(CH_3COOH) = (1.306 mol/L)(0.03166 L)$

= 4.135 ×10⁻² mol

 $[CH_3COOH] = (4.135 \times 10^{-2} \text{ mol})/(0.0500 \text{ L}) = 0.827 \text{ M}$

11.4 REACTION STOICHIOMETRY IN SOLUTIONS: OXIDATION-REDUCTION TITRATIONS

Background on Oxidation-Reduction (Redox) Reactions

<u>Oxidation</u> ~ increase in the oxidation number, donate electrons <u>Reduction</u> ~ decrease in the oxidation number, accept electrons

$$\begin{array}{cccc} 0 & 0 & +2 & -1 \\ Ca(s) + Cl_2(g) \rightarrow CaCl_2 \\ \downarrow & \uparrow \\ 2e^- &= 2 \times 1e^- \end{array}$$

$$\begin{array}{cccc} 0 & 0 & +2 & -2 \\ 2 \text{ Mg}(s) + \text{O}_2(g) \rightarrow 2 \text{ MgO} \\ \downarrow & \uparrow \\ 2 \times 2 e^- &= 2 \times 2 e^- \end{array}$$

→ Originally, the term oxidation referred only to reactions with oxygen General Chemistry I

Fig. 11.6 Mg burning in air. Flash powder for photograph fireworks

Balancing Oxidation-Reduction Equations

 $CuS(s) + NO_3^{-}(aq) \rightarrow Cu^{2+}(aq) + SO_4^{2-}(aq) + NO(g)$ in aqueous nitric **acid**

Step 1. Divide into two unbalanced half-reactions.

$$CuS \rightarrow Cu^{2+} + SO_4^{2-}$$

 $NO_3^- \rightarrow NO$

- Step 2. Balance all elements except oxygen and hydrogen. Already done.
- > <u>Step 3.</u> Balance oxygen by adding H_2O .

 $CuS + 4 H_2O \rightarrow Cu^{2+} + SO_4^{2-}$

 $NO_3^- \rightarrow NO + 2 H_2O$

Step 4. Balance hydrogen.

- ~ Add H_3O^+ / H_2O (acidic) or H_2O / OH^- (basic) $CuS + 8 H_2O + 4 H_2O \rightarrow Cu^{2+} + SO_4^{2-} + 8 H_3O^+$ $NO_3^- + 4 H_3O^+ \rightarrow NO + 2 H_2O + 4 H_2O$
- Step 5. Balance charge using e⁻.
 CuS + 12 H₂O → Cu²⁺ + SO₄²⁻ + 8 H₃O⁺ + 8 e⁻
 NO₃⁻ + 4 H₃O⁺ + 3 e⁻ → NO + 6 H₂O

Step 6. Combine the two half-reactions canceling e⁻.
3 × (CuS + 12 H₂O → Cu²⁺ + SO₄²⁻ + 8 H₃O⁺ + 8 e⁻)
8 × (NO₃⁻ + 4 H₃O⁺ + 3 e⁻ → NO + 6 H₂O)
3 CuS + 8 NO₃⁻ + 8 H₃O⁺ → 3 Cu²⁺ + 3 SO₄²⁻ + 8 NO + 12 H₂O
-2 +5 +6 +2

Disproportionation

 Redox reaction in which a single substance is both oxidized and reduced.

Redox Titration

➤ Titration of Fe²⁺ in an iron ore with KMnO₄
MnO₄^{-(aq)} + 5 Fe^{2+(aq)} + 8H⁺(aq)
→ Mn^{2+(aq)} + 5 Fe^{3+(aq)} + 4H₂O(/)

Volume of 0.09625 M KMnO₄ at the end point ~ 26.34 mL

 $n (MnO_4^{-}) = (0.02634 \text{ L})(0.09625 \text{ mol/L}) = 2.535 \times 10^{-3} \text{ mol}$

 $n (Fe^{2+}) = n(MnO_4^{-}) \times 5 = 1.268 \times 10^{-2} \text{ mol}$

Titration of Ca²⁺ in an iron ore with KMnO₄ *~ Indirect method*

 $\begin{array}{ll} \operatorname{Ca}^{2+}(aq) + \operatorname{C_2O_4}^{2-}(aq) \to \operatorname{Ca}\operatorname{C_2O_4}(s) \\ & \text{oxalate} & \text{calcium oxalate} \\ \operatorname{Ca}\operatorname{C_2O_4}(s) + 2\operatorname{H}^+(aq) \to \operatorname{Ca}^{2+}(aq) + \operatorname{H_2C_2O_4}(aq) \\ & \text{oxalic acid} \end{array}$

2 MnO₄^{-(aq)} + 5 H₂C₂O₄(aq) + 6 H₃O^{+(aq)} → 2 Mn^{2+(aq)} + 10 CO₂(g) + 14 H₂O(/)

→ "nonvolatile" we mean that the vapor pressure of the solute above the solution is negligible.

11.5 PHASE EQUILIBRIUM IN SOLUTIONS: NONVOLATILE SOLUTES

Raoult's law

~ for Ideal solutions

Vapor pressure of solvent in solution

 $P_1 \propto$ its mole fraction X_1

 $\mathbf{P}_1 = \mathbf{X}_1 \mathbf{P}_1^{\circ}$

 P_1° : vapor press of pure solvent Plot of P_1 vs. $X_1 \sim$ a straight line

Fig. 11.10 Vapor pressure of solvent in ideal and nonideal solutions.

Real solutions

~ *Positive or negative deviations* from the linear behavior of Raoult's law

Real solutions \rightarrow ideal solutions as $X_1 \rightarrow 1$ (dilute)

- Negative deviations
 - ~ solute-solvent attractions > solvent-solvent attractions
- Positive deviations
 - ~ solute-solvent attractions < solvent-solvent attractions

General C

Colligative properties

Collective properties depending on the *number* of dissolved particles rather than the *nature* of the particular particles involved

→ Determination of *Molar mass*

Let us consider

Nonvolatile solute, Nonelectrolyte, Binary solution

- Vapor pressure lowering
- Boiling-point elevation
- Freezing-point depression
- Osmosis

Vapor-Pressure Lowering

$$\Delta P_1 = P_1 - P_1^{\circ} = X_1 P_1^{\circ} - P_1^{\circ} = -X_2 P_1^{\circ}$$
$$\Delta P_1 = -X_2 P_1^{\circ}$$

 P_1 (above a dilute solution) < P_1° (above a pure solvent)

Boiling-Point Elevation

Let $P_1^{\circ} = 1$ atm and $n_1 >> n_2$ (dilute solution). Slope of P_1 vs T curve: $S = -\Delta P_1 I \Delta T_b$ $\Delta T_b = -\frac{\Delta P_1}{S} = \frac{X_2 P_1^{\circ}}{S} = \frac{1}{S} \left(\frac{n_2}{n_1 + n_2} \right) = \frac{1}{S} \frac{n_2}{n_1} = \frac{1}{S} \left(\frac{m_2/M_2}{m_1/M_1} \right)$

 $K_{\rm b}$ = 0.512 K kg mol⁻¹ for water

Fig. 11.11 Boiling point elevation.

TABLE 11.2

Boiling-Point Elevation and Freezing-Point Depression Constants

			Kb		K _f
Solvent	Formula	<i>Т</i> _b (°С)	(K kg mol ⁻¹)	<i>Т</i> _f (°С)	(K kg mol ⁻¹)
Acetic acid	CH₃COOH	118.1	3.07	17	3.9
Benzene	C_6H_6	80.1	2.53	5.5	4.9
Carbon tetrachloride	CCl ₄	76.7	5.03	-22.9	32
Diethyl ether	$C_4H_{10}O$	34.7	2.02	-116.2	1.8
Ethanol	C_2H_5OH	78.4	1.22	-114.7	1.9
Naphthalene	C ₁₀ H ₈	_	—	80.5	6.8
Water	H ₂ O	100.0	0.512	0.0	1.86

EXAMPLE 11.12

When 6.30 g of an unknown hydrocarbon is dissolved in 150.0 g of Benzene, the boiling point of the solution increases by 0.597°C. What is the molar mass of the unknown substance?

$$m = \frac{\Delta T_b}{K_b} = \frac{0.597 \, K}{2.53 \, K \, kg \, mol^{-1}} = 0.236 \, mol \, kg^{-1}$$

$$n = (0.236 \ mol \ kg^{-1}) \times (0.1500 \ kg) = 0.0354 \ mol$$

$$molar \ mass = \frac{mass}{n} = \frac{6.30 \ g}{0.0354 \ mol} = 178 \ g \ mol^{-1}$$

Hydrocarbon: anthracene $(C_{14}H_{10})$

29

Freezing-Point Depression

 $\Delta T_{\rm f} = T_{\rm f}' - T_{\rm f} = -K_{\rm f} {\rm m}$

 $K_{\rm f}$: cryoscopic constant $K_{\rm f}$ = 1.86 K kg mol⁻¹ for water

For dissociating solutes, count total molalities. $Ca(NO_3)_2$ total 3 moles $(Ca^{2+}, 2 NO_3^{-2}s)$

Fig. Freezing-point depression

Fig. 11.13 Freezing-point depression of ionic substances.

HAc(M), NaCl(MX), FeCl₃(MX₃)

Osmosis

Osmosis is the movement of **solvent** particles from a region of lower to a region of higher concentration through a semi-permeable membrane. (Larger solute molecules can not pass through the membrane.)

Osmotic pressure, π , is the pressure that must be applied to prevent the net flow of solvent.

van't Hoff equation

c = molarity

- $R = 0.0821 \text{ atm} \cdot \text{L/mol} \cdot \text{K}$
- *T* = Kelvin temperature

Reverse Osmosis

FROM TAP WATER TO PURE WATER

EXAMPLE 11.16 A chemist dissolves 2.00 g of a protein in 0.100 L water. The osmotic pressure is 0.021 atm at 25°C. What is the approximate molar mass of the protein?

$$c = \frac{\pi}{RT} = \frac{0.021 \ atm}{(0.08206 \ L \ atm \ mol^{-1} \ K^{-1})(298 \ K)} = 8.6 \times 10^{-4} \ mol \ L^{-1}$$
$$M = \frac{20.0 \ g}{8.6 \times 10^{-4} \ mol} = 23,000 \ g \ mol^{-1}$$

Osmotic pressure is useful for large molecules with low solubilities. Under the identical conditions, Osmotic pressure with h = 22 cmVapor-pressure lowering = 4.8×10^{-7} atm Boiling-point elevation = 0.00044 KFreezing-point depression = 0.0016K

11.6 PHASE EQUILIBRIUM IN SOLUTIONS: VOLATILE SOLUTES

Ideal mixture of volatile substances

 $P_1 = X_1 P_1^{\circ}, P_2 = X_2 P_2^{\circ} = (1 - X_1) P_2^{\circ}$

> Henry's Law For $X_2 <<1$, $P_2 = k_2 X_2$ k_2 : Henry's law constant For $X_1 <<1$, $P_1 = k_1 X_1$

- ~ Henry's law applies to a volatile *solute* in a dilute solution.
- ~ Carbonation of soft drinks
- $\sim O_2$ dissolved in blood

General Chemistry I

Fig. 11.15 Vapor pressures above a mixture of two volatile liquids.

Distillation

 $P_1^{\circ} = 0.198$ atm for hexane (C₆H₁₄) at 25°C. $P_2^{\circ} = 0.0600$ atm for heptane (C₇H₁₆) at 25°C. A solution of $n_1 = 4.00$ mol and $n_2 = 6.00$ mol.

✤ Mole fractions in the solution

 $X_1 = 0.400, X_2 = 0.600$ $P_1 = X_1 P_1^{\circ} = (0.400)(0.198 \text{ atm}) = 0.0792 \text{ atm}$ $P_2 = X_2 P_2^{\circ} = (0.600)(0.0600 \text{ atm}) = 0.0360 \text{ atm}$ $P_{\text{tot}} = P_1 + P_2 = 0.1152 \text{ atm}$

Mole fractions in the vapor (Dalton's law)

 $P_1 = Y_1 P_{tot}$, $P_2 = Y_2 P_{tot}$ $Y_1 = 0.0792$ atm / 0.1152 atm = 0.688 $Y_2 = 1 - Y_1 = 1 - 0.688 = 0.312$

→ the vapor is enriched in the more volatile component General Chemistry I

Fractional Distillation

 Separation of two or more components of a liquid solution by successive evaporation and condensation on the basis of their different boiling points

General Chemicary .

- Maximum-boiling azeotrope Fig 11.19a HCI / H₂O
 - ~ large negative deviation, strongly attractive
 - ~ $T_{\rm b}$ = 108.58 °C at $X_{\rm HCI}$ = 0.202
- > Minimum-boiling azeotrope Fig 11.19b C_2H_5OH/H_2O
 - ~ large positive deviation
 - ~ $T_{\rm b} = 78.17$ °C at $X_{\rm H2O} = 0.044$
 - ~ the last 4% of water can not be removed by distillation

An azeotrope behaves like a single-component fluid.

Note that the numbers for X_{HCI} and X_{H2O} in Fig 11.19a & b are incorrect.

The Strongest Alcoholic Drink in the World

95 v%

72 v%

11.7 COLLOIDAL SUSPENSIONS

42

Colloids

- A dispersion of large particles $(1 \text{ nm} \sim 1 \mu \text{m})$ in a solvent
- Intermediate between a solution and a heterogeneous mixture
- Homogenous appearance but scatters light

Dispersed	Dispersion	Technical	
phase	medium	name	Examples
solid	gas	aerosol	smoke
liquid	gas	aerosol	hairspray, mist, fog
solid	liquid	sol or gel	printing ink, paint
liquid	liquid	emulsion	milk, mayonnaise
gas	liquid	foam	fire-extinguisher foam
solid	solid	solid dispersion	ruby glass (Au in glass); some alloys
liquid	solid	solid emulsion	bituminous road paving; ice cream
gas	solid	solid foam	insulating foam

*Based on R. J. Hunter, Foundations of Colloid Science, Vol. 1 (Oxford: Oxford University Press, 1987).

Flocculation

- Acceleration of the settling out of a colloid through the addition of salts.
- Salts reduce the electrostatic repulsions between suspended particles. (ex. river deltas, paints)

Fig. 11.21 Process of flocculation: Dispersion \rightarrow Aggregation \rightarrow Sedimentation

Precipitation

~ flocculation, centrifugation, membrane filtration

Fig. 11.22 (a) This colloidal suspension of $PbCrO_4$ appears cloudy. (b) After flocculation, the precipitate settles to the bottom.

